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Abstract. Starting from a primitive 6-j symbol for S 0 ( 2 1 +  1) in which four elementary 
spinor irreducible representations (irreps) ( f f  . . . $ )  appear, and using the properties of the 
Kronecker products of partially stretched irreps, we develop a bootstrap procedure, based 
on a generalisation of the Biedenharn-Elliott sum rule, for calculating other 6-j and 9-j  
symbols for S0(2I+  1). Several of our formulae can be expressed in terms of SO(3) 3-j 
symbols and rotation matrices cf',,,"&r). An explanation for this is found by using the 
complementary groups whose generators involve the spin S and quasispin Q of electrons 
in an atomic I shell. The relation between the two kinds of coupling, that of the irreps of 
S0(2I+ 1) and that of the SO(3) angular momenta, is particularly fruitful ifthe quasiparticle 
description is employed for the electrons. A further bootstrap leads to a formula for an 
S0(21+ 1) 6-j symbol whose six i m p s  are all of the type (1 1 . . . 10. . . 0), and this is shown 
to be consistent with a formula for an Sp(2n) 6-j symbol if we replace 2n by the negative 
dimension -21 - 1. 

1. Introduction 

The quantum theory of angular momentum depends in a crucial way on the n-j symbols 
associated with the names of Wigner (1959,1965) and Racah (1942). Among the many 
surveys that have been made over the years, those of Edmonds (1957), Jucys and 
Bandzaitis (1977), Biedenharn and Louck (1981), and Lindner (1984) are particularly 
useful. The fact that we live in a three-dimensional space gives the theory a structure 
determined by S0(3), the special orthogonal group in three dimensions. However, it 
was clear many years ago that much of the mathematics could be carried over to other 
groups. The first systematic generalisation of the n- j  symbols was made by Griffith 
(1962) for point groups. This area of application was further developed by Butler 
(1981), who applied methods that he had previously worked out for an arbitrary 
compact Lie group (Butler 1975). The usefulness of the generalised n-j symbols to 
nuclear and particle physics is apparent from the work of Kramer (1967), Moshinsky 
and Chacdn (19681, Hecht (1975) and Le Blanc and Hecht (1987), among others. Our 
own interest has derived from work on the Jahn-Teller effect (Judd er a1 1986a) and 
the quasiparticle approach to atomic shell theory (Judd and Li 1989), areas where a 
knowledge of the n-j symbols for S0(21+ 1) and G2 is important. 

The study of group-subgroup structures brings the so-called isoscalar factors into 
play. They can be regarded as parts of factored Clebsch-Gordan ( C G )  coefficients or 

0305-4470/90/040385 + 21$03.SO @ 1990 IOP Publishing Ltd 385 



386 B R Judd, R C Leavitt and G M S Lister 

generalised 3-j symbols. The literature is awash with all kinds of expressions for special 
n-j symbols and isoscalar factors. General formulae (such as exist for SO(3)) are hard 
to come by for the general Lie group, mainly because of multiply occurring irreducible 
representations (irreps) in the reduction of the Kronecker products of pairs of irreps. 
Additional classificatory labels have to be defined-a procedure that is often difficult 
to do in an elegant and satisfying manner. Problems of this kind are not so awkward 
if a purely numerical approach is followed. Indeed, procedures for calculating the 
actual values of the generalised n-j symbols are well advanced (see, for example, 
Bickerstaff and Wybourne 1981, Searle and Butler 1988). The basic idea is to use a 
knowledge of a few simple cases to get others via the extension of the Biedenham-Elliott 
sum rule. This bootstrap method does not lend itself very readily to a general algebraic 
approach. However, for many applications the irreps that enter the calculations tend 
to be of low dimensionality, or of a special kind, and the multiplicity problem may 
be either not severe or absent altogether. We can thus ask whether analytical expressions 
can be found in terms of the highest weights that define the irreps. Butler (1976) has 
described how the classic formulae for SO(3) can be derived from a bootstrap that 
takes as its starting point a few very simple cases. 

We need not be limited to this kind of method. Generating functions can be devised 
in some special cases (Judd and Lister 1987); isoscalar factors can be constructively 
put to use (AliSauskas 1987); and we can sometimes use the mathematical structure 
inherent in a particular physical problem (Hecht 1975, Le Blanc and Hecht 1987). In 
the present paper we propose to use the bootstrap approach in conjunction with our 
knowledge of atomic quasiparticles. Such quasiparticles have already been used to 
provide a reason for the existence of a particularly simple expression for a 6-j symbol 
for S 0 ( 2 1 +  1 )  in which four elementary spinors appear (Judd 1987). Needless to say, 
we do not claim that our formulae for 6-j and 9-j symbols depend on the existence 
of electrons in atoms: our quasiparticles merely provide a framework that assists in 
the development of the mathematics and in getting an understanding of the formulae 
that the bootstrap approach leads to. However, our use of quasiparticles means that 
many of our results find an immediate application in atomic shell theory. As is indicated 
in sections 16 and 17, additional bootstraps produce results of a more general interest. 

2. Definitions 

It is often convenient to work with U coefficients as well as 6-j symbols. In analogy 
to the definition of Jahn (1951) for S0(3), we define 

{: 2 ;} ( l )  U ( 2) = [Dim( W,) Dim( W6)]”* 

where Wi is an irreducible representation (irrep) of S0(21+  1 )  and Dim( Wi) its 
dimension. For all triads ( W, W2 W,) of irreps considered in the present paper the 
triple Kronecker product W ,  x W2 x W, does not contain the identity irrep (0) more 
than once, so there is no need to include multiplicity labels in equation ( 1 ) .  The U 
coefficients possess the advantage that, for a given W,,  W,,  W,, and W,, they form 
a unitary matrix with rows and columns labelled by W, and W,. On the other hand, 
the 6-j symbol displays better the symmetries involved in interchanging its third column 
with either of the other two. 



6-j symbols for S0(21+ I )  387 

Similar reasons prompt us to relate a 9-j symbol to another U coefficient by means 
of the equation 

w, w2 w3 

w, W8 w9 

= [Dim( W,) Dim( W,) Dim( W,) Dim( W8)]"* [ W 4 wS wb]* 

Our present interest is limited to just a few kinds of irreps. Rather than spell out 
their highest weights every time they appear, it is convenient to make several abbrevi- 
ations. We write 

(2) 

( 3 l - q  2 P )  2 wq (3) 
so the elementary spinor whose highest weight is (f f . . . f) is denoted by wf.  To describe 
the irrep (1 1 . . . 10. . . 0) in which I - m' ones and m' zeros appear, we introduce an 
associated variable m, defined by 

m + f = (-1) "'( m' + f) (4) 

( 5 )  

The reason for working with m rather than m' is that m is more easily incorporated 
into analytical expressions for phase factors. To make the connections clear, we give 
the m and m' labels for all irreps W(m) of SO(7) in table 1. We note that m is always 
an even number (possibly zero). 

and write 
(I'-"o") W ( m ) .  

Table 1. Values of m, m' and associated quantities for the four irreps of SO(7) of the type 
W (  m ) .  In terms of the number N of electrons in the atomic f shell, the fourth column 
gives values of the total spin S (for N odd) or the quasispin Q (for N even). The fifth 
column gives values of S (for N even) or Q (for N odd). 

3. Phases 

Standard techniques, as described by Wyboume (1970, ch 6), can be used to separate 
Kronecker squares into their symmetric and antisymmetric parts. By using such 
methods, we are led to make the following choices for 3-j phases: 

{w ,w ,W(m)}  = ( - I ) " ~  ( 6 )  
{ W(m,) W(m,) ~ ( m , ) }  = (-i)(mi+m2+m3)/2+T (7) 
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where r=O for 1 =O, 3, 4, 7 , .  . . , and T =  1 for I =  1,  2, 5, 6, .  . . . Equations (6) and 
(7) are to a large extent arbitrary: their function is to guarantee that the correct phases 
are produced when wq = wI and when two of the three possible mi are equal. 

1- j  phases (or, as they are sometimes called, 2-j  phases) are obtained when one of 
the irreps of the type W ( m i )  is set equal to the scalar irrep (00.. . 0). In this case, 
mi = I ( I  even) and mi = -1- 1 ( I  odd). Substitution into equations (6) and (7 )  leads 
to the results 

{ W I )  = ( - 1 ) ’  { W m ) )  = 1 
in agreement with the tabulation of Butler and King (1974). 

can write 
The 3-j phases of equations (6) and (7) involve simple phase triads: that is, we 

{ w, w, w,} = ( w l ) (  w2)( w3) (8) 

c p ( W ( m i ) ) = t m i + . r  cp( w q )  = 1% (9) 

for all cases if we take 

This simplification means that we can manipulate our particular irreps of S0(21+ 1 )  
in a way that closely parallels the angular momentum quantum numbers of the 
traditional Racah-Wigner calculus. Thus columns of a 6-j  symbol can be interchanged 
without introducing phase factors (see Piepho and Schatz 1983, p 348). More generally, 
the formulae of Edmonds (1957), for example, can be extended from SO(3) to S0(21+ 1 )  
by the simple device of making the label replacements j i  + Wi in the n-j symbols and, 
in the formulae themselves, the substitutions 

(2ji + 1 )  + Dim( W , )  ( - 1 y  + ( - l ) + - J .  (10) 
This procedure works whenever all irrep triads occur an even number of times, since 
the so-called historical phases of angular momentum theory disappear. We have used 
the general formulae of Butler (1981) in the analysis that follows; however, the 
replacements (10) serve as useful checks. 

4. Dimensions 

Algebraic expressions for the dimensions of the various irreps of S0(21+1)  of 
interest to us can be found from the general formula of Weyl (1925). This procedure 
can be shortened by noting first that the dimension of wI ,  whose weights are 
(*f, k;,. . . , *$) (with all combinations of signs) is 2’. Since W ( m )  coincides with 
the totally antisymmetric irrep [ 1’-”0””] of U(21+ l ) ,  we have 

the last step (the removal of the primes from the m’s) following from an application 
of equation (4). Finally, from the Kronecker product 

w q =  W ’ X  W ( q ) - - y x  W(q-1)  

we can deduce that 

Dim($’-4 5‘) = Dim( w q )  

= 2’”(q + 1)(21+ l ) ! / ( f  + q + 2 ) !  ( I  - q) ! .  
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Numerical values for special cases of W ( m )  and wq can be found from Wyboume 
(1970, tables A-19 to A-26) or from McKay and Patera (1981). 

5. Primitive 6-j symbols 

The starting point for our analysis is the equation 

where the SO(3) rotation matrix is given by 

(14) 
[ ( j  + m) ! ( j  - m )  ( j  + n)! ( j  - n) 

d’,,,,(f.rr)=2-J 
f 

(-1)‘ ( j +  m - ? ) ! ( j -  n - t ) !  t ! ( t +  n - m)! * 

In the original statement of equation (13) (Judd 1987), the phase factor E was chosen 
to be +l. In the present analysis we prefer to have consistency with equation (3.3.22) 
of Butler (1981) (or its equivalent, equation (6.3.2) of Edmonds (1957)). That is, we 
ask that Butler’s phase be reproduced when we set either W (  m , )  or W (  m2)  equal to 
the scalar irrep (0). This can be achieved by taking 

E = ( - l ) ( m l + m 2 ) / 2 + . r  

6. Partially stretched weights 

As a first extension to the U coefficient of equation (13), we consider 

which, according to Butler (1981, equation (3.2.18)) and the phase choices of section 
3, is equal to the recoupling coefficient 

((wrwr)W(m2),  Wr,  wq I WI, (wrwr) W ( m , ) ,  W q )  (16) 

times the phase factor (-l)T. When q < 1, the first weights of the irreps appearing in 
the expression (16) are stretched, in as much as ;+; = 1 for (w ,w, )  W ( m i ) ,  1 +; = $ for 
( W ( m 2 ) w , ) w q ,  and i+ 1 = $ for ( w r W ( m l ) ) w q .  In cases such as this, it is useful to 
consider the subgroup SO(2)  x SO(21- 1) of S0(21+ 1). The generators of this subgroup 
are those of S0(21+ 1) less the shift operators that change the first weight. When the 
first weights are stretched, every irrep ( w I w 2 .  . . w r )  of S0(21+ 1) can be unambiguously 
replaced by the irrep (wl)  x ( w 2 w 3 .  . . w r )  of SO(2) x SO(21- l ) ,  with the result that the 
recoupling coefficient (16) factorises into a part referring to SO(21- 1) and the part 

(((t)(f))l,  (;I, $I;, ( ( l ) ( t ) ) l ,  3, (17) 

containing the SO(2) labels. Its magnitude is 1, as is that of each of the isoscalar 
factors associated with the four triads in the coefficient (16). Rather than make specific 
phase choices at this point, we simply carry forward a phase ambiguity. We are left 
with the SO(21- 1) recoupling coefficient: this is identical to (16) except that the first 
weights of every irrep appearing therein have been excised. 
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By repeating this procedure 1 - q times, all the $ weights of the irrep wq can be 
removed, and wq becomes (4') of SO(2q + 1) .  We write this irrep as wI,. On converting 
the recoupling coefficient to a U coefficient, we arrive at the result 

= EqU (18) 
WI' WI' Wm2) 

where the primed symbols, as well as the irreps W ( m i )  in the U coefficient on the 
right, refer to SO(2q + 1 ) .  The S0(2q+ 1 )  U coefficient can be evaluated by means of 
equation (13). 

is undetermined. In sections 7 and 8 it appears as E', and 
lies dormant. However, the Racah back-coupling in section 12 enables it to be calculated 
as 

(19) 

It can be shown that this is what we could get if we took the recoupling coefficients 
(17) and all the isoscalar factors associated with the reduction 

At present the phase 

Eq = { W,} { WI.} = ( - 1 )  I-'. 

s0(21+1) -+s0(2 )xs0(2 )x . .  . x s o ( 2 ) x s o ( 2 q + 1 )  (20) 

equal to $ 1 .  As an illustration of how this truncation technique can be used to find 
an SO(7) 6-j symbol, we give the following equations: 

I (111) (111) ( 1 1 1 )  
( 3 3 1 )  (111) (110) 

2 2 2  2 2 2  

2 2 2  2 2 2  

7. First bootstrap 
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This phase agrees with that of Edmonds (1957, equation (6.2.12)) when the substitutions 
of equations (9) are made. With the aid of equations (18) and (13), the sum becomes 
C [8/Dim( W(m))l 1/2 d m + l / 2 , m l + l / 2  q + 1 / 2  ( LT) 2 d m+1/2,m2+1/2 1 + 1 / 2  (1T)d9+1/2 2 m + 1 / 2 , m 3 + 1 / 2 ( i T )  

m 

= [Dim( W( ml))  Dim( W (  m 2 ) )  Dim( W( m3))]’l2 

We first perform this sum over m for q = 1. The techniques for doing this are 
described in appendix 1 for the general case where q is not necessarily equal to 1. 
Both 6-j symbols on the right-hand side of equation (23) become equal to each other, 
so we can extract either the positive or negative root from the sum (which turns out 
to be invariably a positive quantity). We write 

(24) 
1 { w y  W m 2 )  W m 3 )  

WI WI 

=  dim( W ( m , ) )  Dim( W (  m 2 ) )  Dim( W(m”)A2(m,m2m3)2’]-’’2 
where 

in which 
S i  = f ( 1 -  mi - mj+ m k )  
Si = ; ( I +  mi + m, - mk + I )  

T123 = f(l+ m, + m2+ m3 + 2 ) ,  
T ’ ~ ~  = f(l- m, - m2- m3 - I ) .  

The phase ~ 1 2 3  in equation (24) should be chosen to reduce to Butler’s phase 
when W (  m j )  = (0) ( i  # j). It should also be symmetric with respect to m, , m2 

(26) 
However, we shall often retain the epsilon as a convenient abbreviation and to indicate 
how this particular phase choice percolates through the calculations. 

and m3 and preferably real. One function that possesses the required properties is 
- ( _ l ) ( m 2 m g + m 3 m , + m l m , ) / 4  

€123 - 

8. Repetition for arbitrary q 

We now repeat the sum of equation ( 2 3 )  without the limitation q = 1. Details are given 
in appendix 1. The right-hand side of equation ( 2 3 )  gives two 6-j symbols, one of 
which we already know. We get 

Wl 

q + f  f ( 1 - m 3 )  i ( l + m , + 1 )  1 mb 

2 q + 2  
Dim( W ( m 2 ) )  Dim(wq) m , + f  m, 

- - -E123 

(27) 
where 

m, = f( m2 - m , )  ( I  even) 

m , = - t ( m , + m z + t )  m b - 2 ( m 2 - m l )  --I ( I  odd). 

mb = - i (ml  + m2+ 1) 
(28) 
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The surprising appearance of an SO(3) 3-j symbol becomes even more striking if it is 
converted to a Clebsch-Gordan ( C G )  coefficient and if the S0(21+1)  6-j symbol is 
replaced by a U coefficient: 

(29) 

We see that the unitary matrix formed by the U coefficients with respect to wq and 
W(m,) is identical (apart from a possible phase) to the matrix formed by the CG 

coefficients, the rows being labelled by q and the columns by the pair ( m a ,  mb) for 
which the sum is equal to -m, -4. 

1 W C d  W(m3) W(m2) 
Wl wq 

= & I 2 3 ( f ( I -  m3), ma ; $ ( I +  m3+ I ) ,  mb I q + t ,  -m,  -4). 

9. Regge's magic square 

Before exploring the reason for equation (29), we note that neither the CG coefficient 
nor the 3-j symbol of equation (27) explicitly exhibits the symmetry with respect to 
m, and m3 that the U coefficient does. The restructuring of the arguments of the 3-j 
symbol into a magic square, as described by Regge (1958), corrects this defect. We 
get, for 1 odd, the Regge symbol 

I - q  q + m l + l  q - m ,  

in which the ( m , ,  m3) symmetry appears as a reflection in the diagonal. A similar 
pattern emerges for I even. 

The ( m, ,  m3) symmetry is also exposed by the representation of our 3-j symbol in 
terms of a quadruply stretched 9-j  symbol, a possibility apparent from the formula of 
Lindner (1984, p 62): 

( q + f  f ( l - m 3 >  t ( I+m3+1)  
m l + f  f (m2-m, )  - f ( m , + m 2 + 1 )  

Dim( w,)(  I - m1 + 1)  ! ( I  + m, + 2) ! ( I  - m3 + 1 )  ! ( I  + m3 + 2) ! 

=- [  2'(2q+2)A(m,m2m3)(21+1)!(21+1)! 1 
( I  even). (30 )  

is:' 81- m,)  
f T123 

f ( I -m3)  f ( I + m 3 + 1 )  q+f 
; ( I +  m, + 1 )  

This formula is of use later. 

10. Vanishing symbols 

It is usually a simple matter to understand why a particular 3-j  symbol for SO(3) is 
zero. For example, 
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because 2 >  1 .  When this 3-j symbol is converted to a 6-j symbol of SO(7) by means 
of equation (27), we get 

I i 2 2 2  2 2 2  2 2 2  

(110) (100) (110) 
(111) (111) (111) 

which obviously vanishes because (100) x (1 10) does not contain ( 1  10) in its reduction 
(see Wyboume 1970, table D-4). 

Parallel statements are often not so easy to make for the class of S0(21+1) 6-j 
symbols deriving from the 3-j symbols 

(; ;I, -;m) 
(2 j  + j ’  odd) 

which are all zero. For example, if we pick j =;, j ’ =  2, m = f ,  we can deduce 

} = O  ( 1 1 1 1 )  (1110) ( 1 1 1 1 )  
(1111) (2111)  (1111) 

2 2 2 2  2 2 2 2  2 2 2 2  

for SO(9). From the perspective of this group there is no obvious reason why equation 
(32) should hold. An opportunity to give an explanation in terms of the properties of 
S0(21+ 1 )  occurs when W( m2)  = ( 1  10. . . O), since we can construct Casimir’s operator 
G from tensors of that type. For example, the choice of parameters given by j = i, 
j’ = 2, and m = 5 leads to the SO(7) 6-j symbol 

(111) (221) (111) 

(111) (110) (111)  
2 2 2  2 2 2  2 2 2  

In analogy to the well known result 

(33) 

- a ( a + l ) - b ( b + l ) - c ( c + l )  
{ c  a c l  

for an SO(3) 6-j symbol, we find the SO(7) symbol (33) is proportional to 

(G($ it)) - (G(4ff)) - ( G (  1 1  1 ) )  

which evaluates to (69 - 21 - 48)/40 = 0. This kind of analysis only works for a few 
cases: it does not account for equation (32). Of course, we shall be able to understand 
such surprises as soon as we can give an explanation for equation (29). To that end, 
we turn to atomic quasiparticles. 

11. Complementarity 

The quasiparticle factorisation of an atomic 1 shell is described in appendix 2. The 
crucial point for us here is that there are two ways of representing an atomic state: 
we can couple a variety of irreps of S0(21+ l ) ,  as indicated by the ket (A5), or we 
can use angular momentum quantum numbers like Q, M,, S, and Ms. The two schemes 
are complementary in the sense of Moshinsky and Quesne (1970). As we shall see 
immediately, a recoupling of the irreps leads to the U coefficient of equation (29), 
while a recoupling of the angular momenta provides the CG coefficient of that same 
equation. In setting things out, there is little point in introducing a new phase system, 
particularly since it would depend on the far from trivial choices entailed in defining 
the various quasiparticle vacua. We thus introduce the symbol =, which is to be 
interpreted as meaning ‘equals, to within a phase’. 
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The recoupling coefficient that enters when the state (A5) is expanded as a linear 
combination of the states 

I{(w/ ,4WI~)pAW(mA)r wlv)wq, WIZ, waLML) (34) 
is 

(35) 
We have already seen from appendix 2 that T for the ket (34) is q +  4, while MT, from 
equation (Al l ) ,  is * ( m A + f ) .  As for the ket (A5), we can calculate values of Q, MO, 
S and Ms from the various irreps and parities listed therein, so the expansion of (34) 
in terms of the kets (A5) is equivalent to a mere change of quantisation. The assignments 
of quantum numbers can be worked out with the aid of table I of Racah (1949), the 
results of appendix 2, and the final two columns of table 1 .  We find that the CG 

coefficient of equation (29) can be identified with 
(36) 

for 1 odd, PAPB = ug, and for 1 even, PAPB = gg; with 

(37) 
for 1 odd, PAPB = gu, and for 1 even, PAPB 3 uu; with 

(38) 
for 1 odd, PAPB = uu, and for 1 even, pAps = gu; and with 

(39) 
for 1 odd, P A P B E  gg, and for 1 even, P A P B =  ug. The four CG coefficients (36)-(39) are 
equal (to within a phase). Thus the structure of equation (29) is directly accounted 
for, and the vanishing of such S0(21+ 1 )  6-j symbols as (32) and (33)  receives a simple 
explanation. 

( S  Ms ,  Q MQ I T MT) 

(S -Ms, Q -MQ I T - W )  

(0 MQ, s Ms I T MT) 

(0 - M v ,  s -Ms I T -M7) 

12. Racah back-coupling 

We can now extend our knowledge of 6-j symbols for S0(21+1) by using Racah’s 
back-coupling formula (Edmonds 1957, equation (6.2.1 l ) ) ,  as generalised by Butler 
(1981, equation (3.3.23)): 

{:; ;: ;:::;I 

4;; x:; :) 

= 1 Dim( W m J ) {  W m d  wqwJ {w~w,  W m d )  { w ~  W m d )  

W m , )  W m 2 )  W m , )  W m 1 )  W(m2) W m 3 )  

Wm2) 

} .  (40) 
w/ wq WI II WI ws w/ 

With the aid of equations ( 1 )  and (29), we get 

= C ( - 1 ) ” 2 ’ 2 ( 4 ( 1 - ~ 3 ) ,  ma;t(l+m3+1),mbIq+t,-ml-t) 
m2 even 

x ( t ( 1 -  m3) ,  m, ; 4(1+ m3 + I ) ,  mb I s +;, -ml - 4 )  
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where ma and mb are defined in equations (28). By setting s =  1 and explicitly 
performing the sum over m2, we recover equations (13) and (18), with given by 
equation (19). For arbitrary s and q, the sum over m2 in equation (41) does not appear 
amenable to simplification. However, it can be identified as a rotation in four- 
dimensional space by referring to the lecture notes of Wigner, as assembled by Talman 
(1968), with the angle of rotation (4  in Talman's equation (10.8)) set equal to .rr/2. 

13. Rotations 

We can take advantage of our quasiparticle scheme to give another explanation for 
equation (41). The vectors Q and S commute with each other and are a natural choice 
for the generators of S0(4), the rotation group in four dimensions. By evaluating 

exp[fi.rr(Q, -s,)]e+ exp[ti.rr(S, - Q,)]  (42) 
for our various quasiparticle operators e', we find that the transformation (42) produces 
the changes 

A + A  CL'P u + i &  &+ iu. (43) 
So, on the one hand, 

exp[fi.rr(Q: - S,)ll( W m , ) ,  W l v ) W q ,  w/c, w) 
- - I (  W m , ) ,  wre)wq, w / v ,  w) 

We see that iMQ-MS = i2MQ-MT -- (-l)MQz(-l)'"2'2, so the U coefficient matches the 
sum over a product of two CG coefficients, weighted by (-1) m2'2, as previously derived 
in equation (41). 

14. 9-j symbols 
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For us, { w q }  = (-l)’, agreeing with the phase factor ( - l ) 2 v ( w q )  in equation (6.4.3) of 
Edmonds (1957) once the second substitution of the pair (9) is made. When we use 
our knowledge of the 6-j symbols in equation (46), we are confronted by a sum over 
a product of two 3-j symbols and a d function. It can be carried out by using equation 
(8.27) of Talman (1968), which, in a more suggestive notation, runs 

where 

[MI NI = Mm3 - m4), Hm1- m2)l 

[M‘ ,  N ’ ]  = [ - t ( m 3 +  m4+ I) ,  - f ( m ,  + m2+ I ) ]  
(49) 

for 1 even, and the opposite for I odd. With the aid of equation (3.3.36) of Butler 
(1981), we recover our previous results on setting W( m )  = (0) or W ( m 4 )  = (0). In fact, 
the original argument for explaining the form of equation (13)  depended on the 
recoupling corresponding to W = (0) (Judd 1987). 

The interpretation of equation (48) by rotations makes use of the operator 
exp($i.rrT,), for which 

~ ( w l A w l f i ) p A W ( m 3 ) r  ( w l ~ w I ~ ) p ~ w ( m 4 ) ,  w, (51) 
where the sum runs over p i ,  pL, W ( m 3 )  and W ( m 4 ) ;  and on the other hand, 

The set of quantum numbers (QMQ, SM,) is enough to fix pA and pB; and it can be 
shown that the substitution (MQ, M s ) +  ( - M Q ,  - M s )  changes PAPB according to the 
rules gg-uu and gu-ug. Thus every term ( M b ,  M $ )  in the sum of equation (52) 
has a companion of equal magnitude but associated with a different parity pair. It 
follows that 

Ia(pApB, PAPL)I  = 2 - l l 2  (53) 
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Table 2. Values of U 
W m d  W m , )  (111) 

397 

(OOO)( 1 1 1 ) ( 100) ( 1 10) ( 1 OO)( 1 1 1 ) ( 1 1 O)( 1 10) ( 1 1 O)( 1 1 1 ) (1 1 1 )( 1 1 1 ) 

(000)(111) 1/8 (3/64)112 -1/4 (3/32)'12 -(3/16)1'2 (9/32)'12 
(100)(110) (3/64)'12 -1/8 (3/16)1'2 (9/32)1'2 -1/4 -(3/32)'12 
(100)(111) -1/4 (3/16)'12 -1/4 0 (3/16)'12 0 
(110)(110) (3/32)'j2 (9/32)'/* 0 -1/4 0 -( 3/ 1 6)'12 
(110)(111) -(3/16)'j2 -1/4 (3/16)'12 0 114 0 
(111)(111) (9/32)'12 -(3/32)'12 0 -(3/16)'12 0 114 

provided the combined parities are the same. (They are zero otherwise because T, 
preserves total parity.) In this way we can account for the structure of equation (48). 

As an illustration of an actual calculation, we give in table 2 some 9- j  symbols (in 
the form of U coefficients) for W (  m) = (1 11). The phases of equation (26) have been 
used in conjunction with equation (48). The zeros in the table correspond to identical 
9-j symbols that can be related by an interchange of two rows or two columns, or by 
a transposition, and for which the sum of the nine Q functions, as given by equations 
(9), is an odd integer. 

15. Extensions to W beyond W(m) 

If W = (2"1'-"-"0"'), we can convert the 9- j  symbol of equation (46) to a stretched 
recoupling coefficient. The arguments of section 6 can now be repeated, with the result 
that we can write 

WI 

W m , )  W m 4 )  w W m , )  W(m4) W m )  
where the U coefficient on the right refers to S0(21-2x+ 1). The phase E ;  is analogous 
to the of equation (18). For example, 
(111) (111) (100) 
(ILL) (111) (100) 
(110) (110) (200) 

2 2 2  2 2 2  

2 2 2  2 2 2  

= ~;(2)"'( 147)- 'd~(f~)d:~: , -5 , , ( frr)  = ~;(5)"~/588.  (54) 

The quasiparticle approach provides a check. The irrep (200) in the 9-j symbol is 
involved in the two couplings I((llO)( 110))(200)) and ~((100)(100))(200)). The first 
occurs in the atomic configuration f 4  (or f") in which two (or five) electrons have 
their spins up and the same number with their spins down. In this case S = Ms = 0, 
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Q = f, MQ = -8 (or + 4). The second coupling requires one (or six) electrons with 
each spin orientation, and we now have S = ML, = 0, Q =$, M b  = -f (or +:). From 
equation ( 4 7 )  we see that that the same two d functions are produced as appear in 
equation (54 ) .  

16. General 6-j symbol with six irreps of the type W(m) 

We now propose to use the generalisation of the Biedenham-Elliott identity in the form 

”) 
I = {  WI WI WI I{ W(m5) W m , )  W(m3) 

WI 

w(ml> W(m6) 

( 5 5 )  

where, from equation (3.3.27) of Butler (1981),  we find x = X i  mi.  Our aim is to calculate 
the 6- j  symbol on the far right in equation ( 5 5 ) .  Each 6- j  symbol on the left-hand side 
of that equation can be converted to a 3-j symbol by means of equation (27 ) ;  however, 
the appearance of [Dim( W)]-”* makes it difficult to carry out the sum over W Instead, 
one of the 3-j symbols (say the first) is expressed in terms of the stretched 9-j symbol 
of equation (30). We now use the following formula for n-j symbols of S 0 ( 3 ) ,  as given 
by Lindner (1984, p. 5 5 ) :  

W(m2) W(m4) W(m6) W(m2) W(m4) W(m6) 

e = I T  2 123 f =f(/+ m, + 1 )  g = $ ( I  - m3) h = $ ( l + m 3 + 1 )  

j = q + $  m = m 5 + f  r = $( m6 - m 5 )  u = - - L  2( m , + % + I )  

v = 1  *( m 4-m5) 

All four 3-j symbols on the right-hand side of equation (56 )  possess a stretched upper 
row and thus reduce to a single term. Moreover, the sum over p,  q, s and t does not 
include the third magnetic quantum number in each of the four 3-j  symbols, so the 
sum is effectively over a single index. To expose the symmetry in the best possible 
way, we introduce y as our running index, where 

w = -$( m4+ m5+ 1). 

y = p +$(I + m, + m2 + m3 + 2m4+ 2m6) .  (57) 
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Putting all the parts together, we arrive finally at the result 

(21+ l ) !  (m,+m2+m3+m,+ms+m,)/2 

I W m , )  W m 2 )  W m 3 )  

W m 4 )  W m J  W m J  
= E 123 E1 5 6 E 2 4 6 E 3 4 5 ( -  

I 
x A(mim,m3)A(m,msm6)A(m2m4m6)A(m3m4m5) [f(y)l-’ (58) 

Y 

where 

f ( y )  = ( y +  l ) ! [ t ( l+ m1 + m2+ m3) -y]![f(Z+ m, + m,+ m6) - y l !  

x [f(  I + m2 + m4 + m6) - y ]  ! [ t ( l +  m3 + m, + m 5 )  - y ]  ! 

x [ y -;(.Il + m3+ m4+ m6)]![ y - f( m, + m2+ m4+ m 5 ) ] !  

x [ y - f (m2+ m3+ m5+ m6)]! (59) 

for 1 even. A repetition of the analysis for 1 odd yields equation (58) again, but this 
time f ( y )  is given by 

f ( y )  = ( y -  1)![4(1- m, - m 2 -  m3+ 1 )  -y]![f(l- m ,  - m 5 -  m6+ 1)-y]! 

x [;(I - m2 - m4 - m6+ 1)  - y ] !  [ t (  1 - m3 - m4 - m5 + 1 )  - y]! 

x [ y + f( m, + mj + m4+ m 6 ) ] !  [ y +f( ml + m2 + m4+ m 5 ) ] !  

x [ y + f( m2+ m3 + m4+ m6)]!. 

As an example, the SO(7) 6-j symbol 

I (110) (110) (110) 
(110) (110) (110) 

requires two terms in the sum (corresponding to y = 4  and 5) ,  and evaluates to 1/42, 
in agreement with the calculations of Li (1989). It is straightforward to confirm that 
the 6-j symbol of equation ( 5 8 )  reduces to 
(- 1)  (m,+m2+m, ) /2+7  Nm,, m s ) S ( m 2 ,  m4)[Dim( W m d )  Dim( W m 2 ) ) 1 - ” 2  (61) 

(as it should) when we set W(m6) = (6). 

17. Negative dimensionality 

The formula (58), augmented by equations (59) and (60), bears a striking resemblance 
to the classic expression for an SO(3) 6-j symbol (Edmonds 1957, equation (6.3.7)) 
as well as to the slightly more general formula for an Sp(2n) 6-j symbol whose six 
irreps are all of the type (aiO. . . 0) (Judd and Lister 1987, equation (36)). There is a 
sum over a single running index; this index appears in eight factorial functions; four 
of these eight involve the four triads in the symbol, three of them involve the four 
entries in a pair of columns of the 6-j symbol, and one of them involves the running 
index by itself. However, this last factorial appears in the numerator in the SO(3) and 
Sp(2n) formulae, but in the denominator in the S 0 ( 2 1 +  1 )  formula. 
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Dunne (1989) has recently revived interest in the connection between the groups 
SO(n) and Sp(-n), a subject explored by CvitanoviC and Kennedy (1982). In this 
scheme the antisymmetric irreps (l'Of-u) of S0(21+ 1 )  are related to the symmetric 
irreps (uO . . . 0) of Sp( -21 - l ) ,  and a formal correspondence should exist between the 
respective 6-j symbols. An expression of the form 

( - l ) ' (z+2n -1)!/(2n - l ) !  (62) 

occurs in the formula for an Sp(2n) 6 4  symbol, where z is the running index, and the 
substitution 2n --* -21 - 1 can be handled by writing (62) as 

( - l ) ' ( z+2n  - 1)(2+2n -2 )  * . . (2n) 

which becomes 

( - 1 ) ' ( ~ - 2 1 - 2 ) ( ~  -21 -3 ) .  . . (-21- 1 ) =  (21+ 1)!/(21+ 1 - z)! (63) 

This accounts for the numerator-to-denominator switch mentioned above and also for 
the factor (21 + l ) !  in equation (58). The relation (CO.. . O)+ (l'Of-u) indicates that 
we should take w+ 1-m', that is 

w-+ I + ; - ( -  

In other words, 

w + l - m  

w + l + m + l  

A detailed analysis reveals 

)"(m+;). 

( I  and U both even or both odd) 

( 1  and U with opposite parities). 

hat these various substitutions convert the Sp(2n) formula 
into our expression (58), the only difference coming from a phase factor arising when 
the substitution 2n --* -21 - 1 is made in the Sp(2n) A functions. Our analyses are thus 
consistent with the general statements made by CvitanoviE. and Kennedy (1982). 

18. Concluding remarks 

Our success in obtaining explicit algebraic expressions for several kinds of 6-j symbols 
for S0(21+1) should be tempered by the knowledge that they are all of a class that 
requires no additional labels to resolve multiplicity ambiguities. Extending them into 
that realm is a much more difficult task for which only very limited success has so far 
been achieved (see, for example, Cerkaski 1987). A crucial reason why our analysis 
has worked is the existence of a complementary group whose generators are the spin 
and quasispin associated with electrons in the atomic 1 shell. It is this connection that 
forces the rotation matrices d i n  to appear. Complementary groups have proved useful 
in other contexts, for example, in calculating 6-j symbols for the symmetric irreps 
(no.. . 0) of S0(21+ l ) ,  as described by AliSauskas (1987). Just as in his case, our 
complementary group introduces quantities associated with SO( 3). Without this con- 
nection it is difficult to see how any explanation could be offered for the vanishing 
matrix elements of the type exemplified by equation (32). 

Extensions of our work to other irreps could clearly be made. However, we hesitate 
to embark upon further analysis without some underlying rationale. The existence of 
isotopic spin for nucleons indicates that nuclear quasiparticles would involve irreps 
beyond those needed in the atomic case, but whether such a development would be 
useful is not clear. 
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Appendix 1. Combinatorics 

The sum of equation (23) can be worked out by making use of the properties of 
binomial coefficients. The relevant formulas can be found in the books of Edmonds 
(1957, appendix l ) ,  Jucys and Bandzaitis (1977, p 74), or Lindner (1984, appendix 1). 
Because of the elementary nature of the analysis, we give here only such detail as is 
necessary for an interested reader to be able to reconstruct our working. 

When the d functions of equation (23) are expanded, we are confronted with the 
quadruple sum 
C ( - I ) '+~+"[  1 + (-l)"](q + m + I ) !  ( q  - m)! ( l +  m + I)! ( I -  m)! 

mtuu 

x { ( q +  m + 1 - t ) ! ( q  - m ,  - t ) ! t ! ( t + m ,  - m ) ! ( l +  m+ 1 -U)! 

x ( I  - m2-  U)! U !  (U + m2-  m ) !  ( q  + m + 1 - U)! ( q  - m3 - U)! U !  
x (U i- m3 - m )  !}-I .  (All  

The factor in square brackets is introduced to limit m to even values. The general 
strategy that we follow is similar to that used by Racah (1942, Appendix B) to find 
an expression for an SO(3) 6-j symbol: the occurrence of the index m is reduced until 
the sum over the factorials in which it appears can be carried out. This is done in a 
way that increases the number of factorial functions as little as possible. We make 
the following substitutions: 

( q  + m + 1) !/ t ! U ! ( m  - t + q + 1) ! (m - U + q + 1) ! 
= {s! ( t  - s)! (U - s)! ( q  + 1 + m - t - u + s)!}-' 

S 

( q  - m ) ! / (  q - t - m,)!  ( q  - U - m3)!  (m, + t - m ) !  ( U + m3 - m ) !  
=C {x ! (q  - t - m,  - x ) ! ( q  - U - m,-x)! 

X 

x ( t +  U + m1 + m3 - q - m +x)!} - l  

( I  - m ) ! / (  1 - U - m 2 ) !  ( I  + 1 - U + m ) !  ( U + m, - m ) !  

= 1 (-1)~(21+ 1 - U - r )  ! [ r !  ( I -  U - m2 - r ) !  
r 

x ( 1 +  1 - U +  m - r ) ! ( l +  1 + m2)!]-l. 

The expression (Al)  now involves just four factorials containing m, and the part 
multiplying (-1)"' can be summed. For the other part, which we select to illustrate 
our methods, a further expansion is required: 

( l + m + l ) ! / ( q +  1 + m - t - u + s ) ! ( l + l + m - u - r ) !  
= ( r  + u - s + 1 -  q ) ! ( u  + r ) ! [  w !  ( t +  u - s +  I -  q - w ) !  ( u  + r -  w ) !  

W 

x ( q  + 1 + m - I - U + s - U - r + w )  !I-'. 
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The sum over m can now be performed by using 

C { ( q  + 1 - t - U + s - v - r +  w + m ) !  ( t +  U + m ,  + m, - q + x  - m)!}- '  
m 

{ ( m ,  + m 3 + x +  w + s - U - r + 1) !}-'. - - 2ml+m3+x+w+s--u-- l  

We set r = k - U and perform the sums over U, t and U. A quadruple sum over w, 
s, x and k remains. We write s = y - x  and simplify the power of 2 in equation (A2) 
by first taking 

( I  - q + y - x)!/( y - x)!x! 

= (-l)f ( I  - q ) !  ( I  - q + y - f ) ! / y  !f ! ( I  - q -f)! (x -f)! 
f 

and then summing over x, w and k The sum overfnow has as its essence the expression 

2 ( - 2 ) - f ( ~ -  q + f ) ! / f ! ( I -  q - f ) ! ( f - 2 y +  q - m,  - m3+ m 2 ) ! .  
f 

By differentiating both sides of the identity 

z ' - q + f ( - ; ) f ( I -  q ) ! / f ! ( I -  q -f)! = [f - f (  1 - z')]'-q 
f 

h times with respect to z, and then setting z = 1, we find 

( - 2 ) - f ( I -  q +f)!/f ! ( I  - q - f ) ! ( l -  q +f- h ) !  
f 

( h  odd) 
(h  even). ( - 1 ) y I -  q ) !  h! / ( fh) !  ( I -  q - fh)!2'-4 

To apply this result to our expression, we must take h = 1 - 2q  f 2 y  + m ,  + m3 - m 2 .  
Since q and y are integers, while all mi are even, our sum is non-vanishing only if 1 
is even. 

The sum over y remains. the total phase and the relevant factorials amount to 

C ( - i ) y - q + ( r + m 1 - m 2 + m 3 ) / 2 ( ( q  - m,  - y ) ! ( q  - m3 - y ) ! y  ! ( y  + m,  + m,+ I ) !  
Y 

x [ y  - q + ; ( I +  m, - m, + m , ) ] !  [ I  - y  - $ ( I +  m,  - mz+ m3)I!)-' 

for I even. On making the replacement y = z + q - f (  I + m,  - mz + m,) ,  we can identify 
the sum over y, together with its associated phase, with what is required to produce 
the SO(3) 3-j symbol 

in agreement with equation (24). When the sum involving (-1)'" of the expression 
(Al) is considered, we are led to the result appropriate for I odd. 
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Appendix 2. Atomic quasiparticles 

The states of an atomic 1 shell comprise a collection of configurations l N  (Os N S 41 + 2) 
corresponding to N equivalent electrons, each with angular momentum specified by 
the azimuthal quantum number 1. The entire set forms a basis for the irrep (t"") of 
SO(81+5) (Judd 1968). If the linear combinations 

A: = 2-1/2[a:/2,m + ( -1)1-ma1/2*-m] 

are taken of the annihilation ( a i )  and creation (a:) operators for an electron in state 
i ( Z m , ,  mI), the four sets of coupled tensors (8t8)(k' (k odd, 6 = A, p, v, 6) form the 
generators of the direct product 

(A4) S0,(21+ 1) x S 0 , ( 2 1 +  1) x S 0 " ( 2 1 +  1) x S0,(21+ 1). 

( 9 4  +(LO4 +(" )4  +(I74 

The spinor (t""') breaks up into the direct sum 

2 gg 2 gu 2 ug 2 uu 

where the parity labels g and U specify the evenness or oddness of the numbers of 
electrons (NA and NB) in the spin-up (m, = 1) and spin-down (m, = - 4) spaces 
(Armstrong and Judd 1970a, b). In general, we write pA and p e  for these labels. By 
selectively adding the generators of the four groups appearing in the direct product 
(A4), new S0(21+ 1) groups can be formed, with the result that atomic states can be 
written in the coupled form 

I { (w lhwlp )pA W(mA),  ( w I u w I ~ ) ~  W f m B ) )  wcuLML)* 6-45) 
In this expression the classificatory symbol a has been included to distinguish angular 
momenta L that occur more than once in the irrep W of S0(21+ 1), the group which 
coincides with that of Racah (1949) and whose generators are given by 

( A  t ~ ) ( k ) +  ( P + ~ ) ( ~ )  + ( v t v ) ( k ) +  ( f t & ) ( k )  (A61 
It is sometimes useful to consider the group S0(81+4), which can be inserted as an 
intermediary between SO(81+5) and the direct product (A4). It separates configur- 
ations with even N (of types gg and uu) from those with odd N (gu and ug). 

The operators a: and ai (for a given i )  can be thought of as the two components 
(corresponding to inq = 1 and -1) of a tensor of quasispin rank q equal to 1 (Judd 
1967). Thus the collection of operators for various i form the components of a triple 
tensor a(qs'). The ranks specify the behaviour under commutation with respect to Q 
(the quasispin), S (the total spin), and L (the total orbital angular momentum). In 
order to study the coupling of the quasispin and spin spaces, we define T = Q+S. 
Writing a((")") more succinctly as a( rJ ) ,  we note, first, that t is limited to the two 
possibilities 0 and 1. It is straightforward to show that do') is proportional to tt, and 
that U ( " )  is formed from A t ,  p and vt  (Judd et a1 1986b). Thus T, which is proportional 
to (a(lJ)a(lJ))('o), does not involve ft. This has an interesting consequence. The sum 
(A6) is proportional to the orbital tensor V ( k ) ,  which commutes with both Q and S, 
and hence with T; thus the generators 

( A ~ A  )( k ,  + (CL tP )( k, + ( v)( k ,  (A71 
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of the group S 0 , ( 2 1 +  1) also commute with T (though not necessarily with Q and S 
separately). Denoting by SOT(3) the group whose generators are the components of 
T, we can use the reduction 

S O ( ~ Z + ~ ) + S O ~ ( ~ ) X S O , ( ~ I + ~ )  

to obtain the decomposition 

That is, for N even or N odd, a particular irrep wq is associated with a unique T. Its 
value is given by T = q +i (Judd er a1 1986b, equation ( 8 ) ) .  

The eigenvalues of Qz, S, ,  and T, can be found by using the equations 

Q Z = - 4 ( 2 1 + 1 ) + i ~ a ~ a i  
I 

S 2 = 1 C (  2 a:/*,mal/2,m - aLl/2,ma-l,2,m) 

Tz=-i(2I+1)+C ai/2,mal/I,m 

m 

m 

from which we get 
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